Social Icons

Senin, 18 November 2013

Pengolahan Minyak Bumi


Laporan Proses Pengolahan Minyak Bumi
Minyak bumi bukan merupakan senyawa homogen, tapi merupakan campuran dari berbagai jenis senyawa hidrokarbon dengan perbedaan sifatnya masing-masing, baik sifat fisika maupun sifat kimia.

MINYAK BUMI

Minyak mentah (petroleum) adalah campuran yang kompleks, terutama

terdiri dari hidrokarbon bersama-sama dengan sejumlah kecil komponen yang mengandung sulfur, oksigen dan nitrogen dan sangat sedikit komponen yang mengandung logam.

Struktur hidrokarbon yang ditemukan dalam minyak mentah:

1. Alkana (parafin) CnH2n + 2

Alkana ini memiliki rantai lurus dan bercabang, fraksi ini merupakan yang

terbesar di dalam minyak mentah.

2. Siklo alkana (napten) CnH2n

Sikloalkana ada yang memiliki cincin 5 (lima) yaitu siklopentana ataupun cincin 6 (enam) yaitu sikloheksana.

Sikloheksana Siklopentana

3. Aromatik CnH2n -6

Aromatik memiliki cincin 6 (enam)

Aromatik hanya terdapat dalam jumlah kecil, tetapi sangat diperlukan dalam bensin karena :

- Memiliki harga anti knock yang tinggi

- Stabilitas penyimpanan yang baik

- Dan kegunaannya yang lain sebagai bahan bakar (fuels)

Proporsi dari ketiga tipe hidrokarbon sangat tergantung pada sumber dari minyak bumi. Pada umumnya alkana merupakan hidrokarbon yang terbanyak tetapi kadang-kadang (disebut sebagai crude napthenic) mengandung sikloalkana sebagai komponen yang terbesar, sedangkan aromatik selalu merupakan komponen yang paling sedikit. Pengilangan/penyulingan (refining) adalah proses perubahan minyak mentah menjadi produk yang dapat dijual (marketeble product) melalui kombinasi proses fisika dan kimia. Produk yang dihasilkan dari proses pengilangan/penyulingan tersebut antara lain:

1.     Light destilates adalah komponen dengan berat molekul terkecil.



a.     Gasoline (Amerika Serikat) atau motor spirit (Inggris) atau bensin (Indonesia) memiliki titik didih terendah dan merupakan produk kunci dalam penyulingan yang digunakan sebagai bahan pembakar motor 45% dari minyak mentah diproses untuk menghasilkan gasolin.



b.    Naphta adalah material yang memiliki titik didih antara gasolin dan kerasin. Beberapa naphta digunakan sebagai :

- Pelarut dry cleaning (pencuci)

- Pelarut karet

- Bahan awal etilen

- Dalam kemileteran digunakan sebagai bahan bakar jet dikenanl sebagai jP-4



c. Kerosin memiliki titik didih tertinggi dan biasanya digunakan sebagai :

- Minyak tanah

- Bahan bakar jet untuk air plane

2.     Intermediate destilates merupakan minyak gas atau bahan bakar diesel yang penggunaannya sebagai bahan bakar transportasi truk-truk berat, kereta api, kapal kecil komersial, peralatan pertanian dan lain-lain.

3.     Heavy destilates merupakan komponen dengan berat molekul tinggi. Fraksi ini biasanya dirubah menjadi minyak pelumas (lubricant oils), minyak dengan berat jenis tinggi dari bahan bakar, lilin dan stock cracking.

4.     Residu termasuk aspal, residu bahan bakar minyak dan petrolatum.



Fraksi Minyak Bumi

Proses pertama dalam pemrosesan minyak bumi adalah fraksionasi dari

minyak mentah dengan menggunakan proses destilasi bertingkat, adapun hasil yang diperoleh adalah sebagai berikut:

Jangka titik

Didih (ºC)

Banyaknya atom karbon

Nama Penggunaan

Dibawah 30 1 - 4 Fraksi Gas Bahan Bakar Pemanas

30 – 180 5 – 10 Bensin Bahan bakar mobil

180 – 230 11 – 12 Minyak Tanah Bahan bakar jet

230 – 305 13 – 17 Minyak Gas Bahan bakar diesel, 
Pemanas 305 – 405 18 - 25 Minyak Gas Berat Bahan bakar pemanas

Sisa: 1. Minyak bisa menguap : Minyak-minyak pelumas, lilin, parafin dan vaselin.

        2. Bahan yang tidak bisa menguap : aspal dan arang minyak bumi.

Proses Pengolahan Minyak Bumi


Energi yg paling banyak kita gunakan utk transportasi adalah bensin. Bensin ini memiliki spesifikasi yg bermacam-macam, contohnya premium, pertamax, pertamax plus. Perbedaan dari ketiganya adalah Bilangan Oktan yang artinya kemampuan bahan bakar utk menahan knocking (ketukan) dan terbakar scr spontan, juga bisa diartikan nilai perbandingan antara isooktana dengan n-heptana. Isooktana adalah hidrokarbon dalam minyak bumi yg sangat bagus karena tidak mudah terbakar scr spontan dan beda dengan n-heptana yg sangat mudah terbakar dg sendirinya. Isooktana mempunyai struktur rantai bercabang dan n-heptana rantai lurus. Semakin tinggi isooktana maka semakin bagus kualitas bensin. Sering juga utk menaikkan oktan, mengurangi knocking dan menghindari polusi ditambahkan TEL (Tetra Ethyl Lead), MTBE (Methyl Tertiary Butyl Ether).


Pertamax '92 artinya dalam bahan bakar tsb tersusun dari 92% isooktana dan 8% n-heptana. Adapun spesifikasi dari bensin adalah

  • Premium bilangan oktannya '80 - 82
  • Pertamax '91-92
  • Pertamax Plus '95-98

Bensin dengan oktan tinggi akan terbakar lambat apabila terkena tekanan shg irit BBM. Pemilihan bahan bakar agar efisien dan ramah lingkungan terus diupayakan shg kandungan terbanyak nantinya adalah isooktana dan menekan n-heptana, caranya akan saya jelaskan dibawah.



Di bidang teknik kimia kita seharusnya harus paham tentang pengolahan minyak bumi, bagaimana bahan bakar diperoleh. Masih ingat dalam SMA dulu saya menghafalkan urutan fraksi minyak bumi dari yang teringan ke terberat ( L Be Na Ke So Min ) yaitu LPG, BEnsin, NAfta, KErosin, SOlar, MINyak pelumas. Prosesnya sebagai berikut:


Distilasi Bertingkat / Fraksinasi



Minyak bumi yg didapat dari pengeboran lepas pantai masih berupa cairan kental (crude oil) yang mengandung komponen-komponen lain seperti logam, belerang, nitrogen, air, dan garam-garam. Maka perlu dilakukan pembersihan yg disebut Desalting (menghilangkan garam-garam yg terikut dg mencampurkan minyak + air, shg garam akan terlarut, selain itu juga mencucinya dengan asam basa shg komponen selain hidrokarbon akan hilang). Setelah itu dilakukan pemasakan dgn furnace pada suhu 370 - 400 °C , uap yang dihasilkan dimasukkan lewat kolom feed (tempat masukan) menuju menara distilasi. Menara distilasi memisahkan komponen berdasarkan titik didihnya. Menara distilasi didesain seperti yg sudah saya jelaskan di postingan lalu "desain kolom pemisah distilasi". Uap yang masuk akan bergerak keatas, dan semakin keatas suhu menara semakin rendah, shg komponen yg mempunyai titik didih rendah akan terus bergerak keatas dan masuk pada kolom distilat teratas dan komponen dg titik didih tinggi akan mengisi kolom distilat bawah. Fase yg bukan uap akan tertampung pada kolom bagian bawah sebagai residu. Selanjutnya setelah melewati kolom distilat dilakukan kondensasi menggunakan refrigerant.

     Fraksi hidrokarbon yg didapatkan mulai dari kolom distilat teratas adalah :



  1. Proses Cracking / Pemecahan
    Pada tahap ini fraksi minyak bumi bisa direkayasa untk menghasilkan jenis bahan bakar. Misalnya saja ingin bensin yg banyak dg jumlah karbon antara 5 -10.



Ada 3 cara cracking :

  • Thermal Cracking

Prosesnya dinamakan pyrolisis (menggunakan api) yaitu hidrokarbon jenis alkana dilewatkan pada kolom dg suhu tinggi ( 700 - 900 °C )dan cepat-cepat didinginkan shg terjadi pemendekan rantai alkana (menjadi alkena + hidrogen ). Juga bisa diartikan fraksi minyak bumi dengan jumlah atom C besar ingin dipecah ke jumlah atom C kecil

  • Catalytic Cracking

Proses penggunaan katalis dan biasanya SiO2 dan Al2O3

  • Hydro Cracking

Kombinasi antara keduanya dan menghasilkan senyawa jenuh, dilakukan pada tekanan tinggi


    1. Reforming

Pengubahan struktur molekul dari yg semula lurus menjadi bercabang, utk memperbaiki kualitas dari bahan bakar (bensin) karena isooktana (bercabang) lebih baik daripada n-heptana (lurus). Prosesnya dengan menggunakan katalis dan pemanasan suhu tinggi.


    1. Polimerisasi

Penggabungan molekul-molekul sederhana menjadi molekul komplek. Misalnya isooktana hasil penggabungan antara isobutana dan isobutene.



    1. Treating

Pemurnian minyak bumi dg penghilangan pengotor-pengotornya, misalnya penambahan soda kaustik (NaOH).


    1. Blending

Proses penambahan zat aditif, misal pada bensin ditambah TEL.

Pada prinsipnya pengolahan minyak bumi dilakukan dengan dua langkah, yaitu desalting dan distilasi.

A. Desalting

Proses desalting merupakan proses penghilangan garam yang dilakukan dengan cara mencampurkan minyak mentah dengan air, tujuannya adalah untuk melarutkan zat-zat mineral yang larut dalam air. Pada proses ini juga ditambahkan asam dan basa dengan tujuan untuk menghilangkan senyawa-senyawa selain hidrokarbon. Setelah melalui proses desalting, maka selanjutnya minyak akan menjalani proses distilasi.

B. Distilasi

Minyak mentah yang telah melalui proses desalting kemudian diolah lebih lanjut dengan proses distilasi bertingkat, yaitu cara pemisahan campuran  berdasar perbedaan titik didih. Fraksi-fraksi yang diperoleh dari proses distilasi bertingkat ini adalah campuran hidrokarbon yang mendidih pada interval (range) suhu tertentu. Proses distilasi bertingkat dan fraksi yang dihasilkan dari distilasi bertingkat tersebut dapat digambarkan sebagai berikut.


Diagram menara fraksionasi (distilasi bertingkat) untuk penyulingan minyak bumi. Pandangan irisan menunjukkan bagaimana fasa uap dan cairan dijaga agar selalu kontak satu sama lain, sehingga pengembunan dan penyulingan berlangsung menyeluruh sepanjang kolom.

Fraksi Hidrokarbon yang Didapatkan dari Distilasi Bertingkat

Fraksi
Jumlah Atom C
Titik Didih
Kegunaan
Gas
C1 – C5
-164 °C – 30 °C
bahan bakar gas
Eter petroleum
C5 – C7
30 °C – 90 °C
pelarut, binatu kimia
Bensin
C5- C12
30 °C – 200 °C
bahan bakar motor
Minyak tanah
C12 – C16
175 °C – 275 °C
minyak lampu, bahan bakar kompor
Minyak gas, bakar, dan diesel
C15 – C18
250 °C – 400 °C
bahan bakar mesin diesel
Minyak-minyak pelumas, gemuk, jeli petroleum
C16 ke atas
350 °C ke atas
pelumas
Parafin (lilin)
C20 ke atas
meleleh 52 °C – 57 °C
lilin gereja, pengendapan air bagi kain, korek api,dan pengawetan
Ter

residu
aspal buatan
Kokas petroleum

residu
bahan bakar, elektrode







Fraksi-faksi yang didapatkan setelah proses distilasi selanjutnya diolah lebih lanjut dengan proses reforming, polimerisasi, treating, dan blending.

1. Reforming

Reforming merupakan suatu cara pengubahan bentuk, yaitu dari rantai lurus menjadi bercabang. Proses ini digunakan untuk meningkatkan mutu bensin.


2. Polimerisasi

Polimerisasi merupakan suatu cara penggabungan monomer (molekul molekul sederhana) menjadi molekul-molekul yang lebih kompleks.

3. Treating

Treating merupakan proses penghilangan kotoran pada minyak bumi.

4. Blending

Blending merupakan proses penambahan zat aditif.



        Pemrosesan Minyak Bumi

Pada pemrosesan minyak bumi melibatkan 2 proses utama, yaitu :

1. Proses pemisahan (separation processes)

2. Proses konversi (convertion processes)

Proses pengilangan (refines) pertama-tama adalah mengubah komponen

minyak menjadi fraksi-fraksi yang laku dijual berupa beberapa tipe dari destilasi. Beberapa perlakuan kimia dan pemanasan dilakukan untuk memperbaiki kualitas dari produk minyak mentah yang diperoleh. Misalnya pada tahun 1912 permintaan gasolin melebihi supply dan untuk memenuhi permintaan tersebut maka digunakan proses "pemanasan" dan "tekanan" yang tinggi untuk mengubah fraksi yang tidak diharapkan. Molekul besar menjadi yang lebih kecil dalam range titik didih gasolin, proses ini disebut cracking.

A. Proses Pemisahan (Separation Processes)

Unit operasi yang digunakan dalam penyulingan minyak biasanya sederhana tetapi yang kompleks adalah interkoneksi dan interaksinya.

Proses pemisahan tersebut adalah :

1. Destilasi

Bensin, kerasin dan minyak gas biasanya disuling pada tekanan atmosfer,

fraksi-fraksi minyak pelumas akan mencapai suhu yang lebih tinggi dimana zat-zat hidrokarbon mulai terurai (biasanya kira-kira antara suhu 375 -400°C) karena itu lebih baik jika minyak pelumas disuling dengan tekanan yang diturunkan. Pengurangan tekanan diperoleh dengan menggunakan sebuah pompa vakum (vacuum pump).

2. Absorpsi

Umumnya digunakan untuk memisahkan zat yang bertitik didih tinggi dengan gas. Minyak gas digunakan untuk menyerap gasolin alami dari gas-gas basah. Gas gas dikeluarkan dari tank penyimpanan gas sebagai hasil dari pemanasan matahari yang kemudian diserap ulang oleh tanaman. Steam stripping pada umumnya digunakan untuk mengabsorpsi hidrokarbon fraksi ringan dan memperbaiki kapasitas absorpsi minyak gas.

Proses ini dilakukan terutama dalam hal-hal sebagai berikut:

- Untuk mendapatkan fraksi-fraksi gasolin alami yang dapat dicampurkan pada bensin.

- Untuk pemisahan gas-gas rekahan dalam suatu fraksi yang sangat ringan

(misalnya fraksi yang terdiri dari zat hidrogen, metana, etana) dan fraksi yang lebih berat yaitu yang mempunyai komponen-komponen yang lebih tinggi.

- Untuk menghasilkan bensin-bensin yang dapat dipakai dari berbagai gas ampas dari suatu instalasi penghalus.

3. Adsorpsi

Proses adsorpsi digunakan untuk memperoleh material berat dari gas.

Pemakaian terpenting proses adsorpsi pada perindustrian minyak adalah :

- Untuk mendapatkan bagian-bagian berisi bensin (natural gasoline) dari gas-gas bumi, dalam hal ini digunakan arang aktif.

- Untuk menghilangkan bagian-bagian yang memberikan warna dan hal-hal lain yang tidak dikehendaki dari minyak, digunakan tanah liat untuk menghilangkan warna dan bauxiet (biji oksida-aluminium).



4. Filtrasi

Digunakan untuk memindahkan endapan lilin dari lilin yang mengandung

destilat. Filtrasi dengan tanah liat digunakan untuk decolorisasi fraksi.

5. Kristalisasi

Sebelum di filtrasi lilin harus dikristalisasi untuk menyesuaikan ukuran Kristal dengan cooling dan stirring. Lilin yang tidak diinginkan dipindahkan dan menjadi lilin mikrokristalin yang diperdagangkan.

6. Ekstraksi

Pengerjaan ini didasarkan pada pembagian dari suatu bahan tertentu dalam dua bagian yang mempunyai sifat dapat larut yang berbeda.



B. Proses Konversi (conversion processes)

Hampir 70% dari minyak mentah di proses secara konversi di USA,

mekanisme yang terjadi berupa pembentukan "ion karbonium" dan "radikal bebas". Dibawah ini ada beberapa contoh reaksi konversi dasar yang penting:

1. Cracking atau Pyrolisis

Cracking atau pyirolisis merupakan proses pemecahan molekul-molekul

hidrokarbon besar menjadi molekul-molekul yang lebih kecil dengan adanya pemanasan atau katalis. C7H15C15H30C7H15 C7H16 + C6H12CH2 + C14H28CH2

minyak gas berat gasolin gasalin (anti knock) recycle stock

Dengan adanya pemanasan yang cukup dan katalis maka hidrokarbon paraffin akan pecah menjadi dua atau lebih fragmen dan salah satunya berupa olefin. Semua reaksi cracking adalah endotermik dan melibatkan energi yang tinggi.

 Proses cracking meliputi:

* Proses cracking thermis murni

Proses ini merupakan proses pemecahan molekul-molekul besar dari zat

hidrokarbon yang dilakukan pada suhu tinggi yang bekerja pada bahan awal selama waktu tertentu. Pada pelaksanaannya tidak mungkin mengatur produk yang dihasilkan pada suatu proses crackingi, biasanya selain menghasilkan bensin (gasoline) juga mengandung molekul-molekul yang lebih kecil (gas) dan molekul-molekul yang lebih besar (memiliki titik didih yang lebih tinggi dari bensin).

Proses cracking dilakukan unuk menghasilkan fraksi-fraksi bensin yang berat yaitu yang mempunyai bilangan oktan yang buruk karena umunya bilangan oktan itu meningkat jika titik didihnya turun. Maka pada cracking bensin berat akan diperoleh suatu perbaikan dalam kualitas bahan pembakarnya yang disebabkan oleh 2 hal, yaitu:

- Penurunan titik didih rata-rata

- Terbentuknya alken

Oleh karena itu bilangan oktan dapat meningkat dengan sangat tinggi, misalnya dari 45-50 hingga 75-80.

* Proses cracking thermis dengan katalisator

Dengan adanya katalisator maka reaksi cracking dapat terjadi pada suhu

yang lebih rendah. Keuntungan dari proses thermis-katalisator adalah:

- Perbandingan antara bensin terhadap gas adalah sangat baik karena disebabkan oleh pendeknya waktu cracking pada suhu yang lebih rendah.

- Bensin yang dihasilkan menunjukkan angka oktan yang lebih baik.

Dengan adanya katalisator dapat terjadi proses isomerisasi, dimana alkena dengan rantai lurus diubah menjadi hidrokarbon bercabang, selanjtnya terjadi aromatik-aromatik dalam fraksi bensin yang lebih tinggi yang juga dapat mempengaruhi bilangan oktan.

* Proses cracking dengan chlorida-aluminium (AlCl3) yang bebas air

Bila minyak dengan kadar aromatik rendah dipanaskan dengan AlCl3 bebas air pada suhu 180-2000C maka akan terbentuk bensin dalam keadaan dan waktu tertentu. Bahan yang tidak mengandung aromatik (misalnya parafin murni) dengan 2 atau 5% AlCl3 dapat merubah sebagian besar (90%) dari bahan itu menjadi bensin, bagian lain akan ditingga/ sebagai arang dalam ketel. Anehnya pada proses ini bensin yang dihasilkan tidak mengandung alkena-alkena tetapi masih memiliki bilangan oktan yang lumayan, hal ini mungkin disebabkan kerena sebagian besar alkena bercabang. Kerugian dari proses ini adalah :

- Mahal karena AlCl3 yang dipakai akan menyublim dan mengurai.

- Bahan-bahan yang dapat dikerjakan terbatas.

- Pada saat reaksi berlangsung, banyak sekali gas asam garam maka harus memakai alat-alat yang tahan korosi.

2. Polimerisasi

Terbentuknya polimer antara ikatan molekul yang sama yaitu ikatan bersama dari light gasoline.

C C katalis C C

C – C = C + C – C = C C – C – C – C = C+ C - C- C- C = C - C

suhu /tekanan C C C

rantai pendek tidak jenuh rantai lebih panjang

Proses polimerisasi merubah produk samping gas hirokarbon yang dihasilkan pada cracking menjadi hidrokarbok liquid yang bisa digunakan sebagai:

- Bahan bakar motor dan penerbangan yang memiliki bilangan oktan yang tinggi.

- Bahan baku petrokimia.

Bahan dasar utama dalam proses polimerisasi adalah olefin (hidrokarbon

tidak jenuh) yang diperoleh dari cracking still. Contohnya: Propilen, n-butilen, isobutilen.

CH3 CH3 CH3 H3PO4

2CH3 – C - CH2 CH3 - C - CH2 - C = CH2 C12H24

CH3 tetramer atau tetrapropilen

Isobutelin diisobutilen (campuran isomer)

3. Alkilasi

Proses alkilasi merupakan proses penggabungan olefin dari aromat atau

hidrokarbon parafin.

C katalis C

C = C + C - C - C C - C - C - C

C

etilen isobutan 2,2-dimetilbutan atau neoheksan

(unsaturated) (isounsaturated) ( saturated branched chain)

Proses alkilasi adalah eksotermik dan pada dasarnya sama dengan

polimerisasi, hanya berbeda pada bagian-bagian dari charging stock need be unsaturated. Sebagai hasilnya adalah produk alkilat yang tidak mengandung olefin dan memiliki bilangan oktan yang tinggi. Metode ini didasarkan pada reaktifitas dari karbon tersier dari isobutan dengan olefin, seperti propilen, butilen dan amilen.

4. Hidrogenasi

Proses ini adalah penambahan hidrogen pada olefin. Katalis hidrogen adalah logam yang dipilih tergantung pada senyawa yang akan di reduksi dan pada kondisi hidrogenasi, misalnya Pt, Pd, Ni, dan Cu.

C H2 C

C – C – C = C - C C - C – C – C - C

C katalis C C

diisobutilen isooktan

Disamping untuk menjenuhkan ikatan ganda, hidrogenasi dapat digunakan untuk mengeliminasi elemen-elemen lain dari molekul, elemen ini termasuk oksigen, nitrogen, halogen dan sulfur.

5. Hydrocracking

Proses hydrocracking merupakan penambahan hidrogen pada proses

cracking. C17H15C15H30C7H15 + H2 C7H16 + C7H16 + C15H32

6. Isomerisasi

Proses isomerisasi merubah struktur dari atom dalam molekul tanpa adanya perubahan nomor atom.

3000C

C - C - C - C C - C - C

AlCl3

Proses ini menjadi penting karena dapat menghasilkan iso-butana yang

dibutuhkan untuk membuat alkilat sebagai dasar gasoline penerbangan.

CH3

CH3 - CH2 - CH2 - CH3 CH3 - CH - CH3

n-butana iso-butana

7. Reforming atau Aromatisasi

Reforming merupakan proses konversi dari naptha untuk memperoleh produk yang memiliki bilangan oktan yang tinggi, dalam proses ini biasanya menggunakan katalis rhenium, platinum dan chromium.

Pengolahan Minyak Mentah

Minyak mentah merupakan campuran yang sangat kompleks maka perlu diolah lebih lanjut untuk dapat dimanfaatkan. Gambar 9.5 merupakan tempat pengolahan minyak mentah menjadi fraksi-fraksi minyak bumi, seperti yang ada di SPBU dilakukan melalui penyulingan (distillation) bertingkat.

1. Penyulingan Minyak Bumi

Minyak yang ditambang masih berupa minyak mentah yang belum dapat digunakan. Untuk dapat dimanfaatkan sebagai bahan bakar dan aplikasi lain, minyak mentah perlu diolah di kilang-kilang minyak melalui penyulingan bertingkat dengan teknik fraksionasi. Prinsip dasar penyulingan bertingkat adalah perbedaan titik didih di antara fraksi-fraksi minyak mentah. Jika selisih titik didih tidak berbeda jauh maka penyulingan tidak dapat diterapkan (perhatikan Tabel 9.1).



Hidrokarbon yang memiliki titik didih paling rendah akan terpisah lebih dulu, disusul dengan hidrokarbon yang memiliki titik didih lebih tinggi. Jadi, secara bertahap, senyawa hidrokarbon dapat dipisahkan dari campuran minyak mentah.

Tabel 9.1 Proses Penyulingan Minyak Mentah Menjadi Fraksi-Fraksi Minyak Bumi



Distilat
Hasil
Jumlah Atom C
Aplikasi
Gas
Gasolin
Kerosin
Diesel
Pelumas
Residu
1 – 45 – 1011 – 1516 – 2021 – 40
> 50
Bahan bakar gas, plastik,bahan kimiaBahan bakar cair (bensin), Bahan kimiaBahan bakar pesawat, bahan bakar kompor, bahan kimiaBahan bakar diesel, bahan kimiaPelumas, lilin, malam (wax)
Aspal, zat anti bocor(waterproof)


Fraksi minyak mentah yang pertama keluar dari penyulingan adalah senyawa hidrokarbon dengan massa molekul rendah, kurang dari 70 sma. Fraksi ini dikemas dalam tabung bertekanan sampai mencair. Hasil pengolahan pada fraksi ini dikenal dengan LPG (liquid petroleum gas). Setelah semua fraksi teruapkan, fraksi berikutnya yang keluar adalah fraksi gasolin. Suhu yang diterapkan untuk mengeluarkan fraksi ini berkisar antara 40 – 200°C. Pada suhu tersebut, hidrokarbon mulai dari pentana sampai oktana dikeluarkan dari penyulingan (lihat titik didih pentana sampai oktana). Pada suhu kamar, wujud dari fraksi ini adalah cairan tak berwarna hingga agak kuning dan mudah menguap. Demikian seterusnya hingga semua fraksi dapat dipisahkan secara bertahap berdasarkan perbedaan titik didihnya. Hasil fraksionasi itu menyisakan residu yang disebut aspal berwarna hitam pekat.

2. Perengkahan Minyak Bumi

Untuk memenuhi kebutuhan produk tertentu, hidrokarbon yang berantai panjang dapat dipecah menjadi lebih pendek melalui proses perengkahan (cracking). Sebaliknya, hidrokarbon rantai pendek dapat digabungkan menjadi rantai yang lebih panjang (reforming). Untuk meningkatkan fraksi bensin dapat dilakukan dengan cara memecah hidrokarbon rantai panjang menjadi fraksi (C5–C9) melalui perengkahan termal. Proses perengkahan ini dilakukan pada suhu 500°C dan tekanan 25 atm. Hidrokarbon jenuh rantai lurus seperti kerosin (C12H26) dapat direngkahkan ke dalam dua buah fragmen yang lebih pendek menjadi senyawa heksana (C6H14) dan heksena (C6H12).
C12H26(l)→C6H14(l) + C6H12(l)

Keberadaan heksena (alkena) dari hasil perengkahan termal dapat meningkatkan bilangan oktan sebesar 10 satuan. Akan tetapi, produk dari proses perengkahan ini umumnya kurang stabil jika disimpan dalam kurun waktu lama. Oleh karena produk perengkahan termal umumnya kurang stabil maka teknik perengkahan termal diganti dengan perengkahan katalitikmenggunakan katalis yang dilakukan pada suhu dan tekanan tinggi. Perengkahan katalitik, misalnya alkana rantai panjang direaksikan dengan campuran silikon (SiO2) dan alumina (Al2O3), ditambah gas hidrogen atau katalis tertentu. Dalam reforming, molekul-molekul kecil digabungkan menjadi molekul-molekul yang lebih besar. Hal ini dilakukan guna meningkatkan produk bensin. Misalnya, butana dan propana direaksikan membentuk heptana. Persamaan reaksinya:
C4H10(g) + C3H8(g)→C7H16(l) + H2(g)

3. Bilangan Oktan Minyak Bumi

Fraksi terpenting dari minyak bumi adalah bensin. Bensin digunakan sebagai bahan bakar kendaraan bermotor (perhatikan Gambar 9.6). Sekitar 10% produk distilasi minyak mentah adalah fraksi bensin dengan rantai tidak bercabang. Dalam mesin bertekanan tinggi, pembakaran bensin rantai lurus tidak merata dan menimbulkan gelombang kejut yang menyebabkan terjadi ketukan pada mesin. Jika ketukan ini dibiarkan dapat mengakibatkan mesin cepat panas dan mudah rusak. Ukuran pemerataan pembakaran bensin agar tidak terjadi ketukan digunakan istilah bilangan oktan. Bilangan oktan adalah bilanganperbandingan antara nilai ketukan bensin terhadap nilai ketukan dari campuranhidrokarbon standar. Campuran hidrokarbon yang dipakai sebagai standar bilangan oktan adalah n-heptana dan 2,2,4-trimetilpentana (isooktana). Bilangan oktan untuk campuran 87% isooktana dan 13% n-heptana ditetapkan sebesar 87 satuan. Terdapat tiga metode pengukuran bilangan oktan, yaitu:

a. pengukuran pada kecepatan dan suhu tinggi, hasilnya dinyatakan sebagai bilangan oktan mesin;

b. pengukuran pada kecepatan sedang, hasilnya dinamakan bilangan oktan penelitian;

c. pengukuran hidrokarbon murni, dinamakan bilangan oktan road index.

Beberapa hidrokarbon murni ditunjukkan pada Tabel 9.2.

Tabel 9.2 Bilangan Oktan Hidrokarbon

Hidrokarbon
Bilangan Oktan Road Indeks
n-heptana
0
2-metilheptana
23
n-heksana
25
2-metilheksana
44
1-heptena
60
n-pentana
62
1-pentena
84
1-butena
91
Sikloheksana
97
2,2,4-trimetil pentana
100


Makin tinggi nilai bilangan oktan, daya tahan terhadap ketukan makin kuat (tidak terjadi ketukan). Ini dimiliki oleh 2,2,4-trimetilpentana (isooktana), sedangkan n-heptana memiliki ketukan tertinggi. Oleh karena 2,2,4-trimetilpentana memiliki bilangan oktan tertinggi (100) dan n-heptana terendah (0) maka campuran kedua senyawa tersebut dijadikan standar untuk mengukur bilangan oktan. Untuk memperoleh bilangan oktan tertinggi, selain berdasarkan komposisi campuran yang dioptimalkan juga ditambah zat aditif, seperti tetraetillead (TEL) atau Pb(C2H5)4. Penambahan 6 mL TEL ke dalam satu galon bensin dapat meningkatkan bilangan oktan 15–20 satuan. Bensin yang telah ditambah TEL dengan bilangan oktan 80 disebut bensin premium. Metode lain untuk meningkatkan bilangan oktan adalah termal reforming. Teknik ini dipakai untuk mengubah alkana rantai lurus menjadi alkana bercabang dan sikloalkana. Teknik ini dilakukan pada suhu tinggi (500–600°C) dan tekanan tinggi (25–50 atm).
























Tidak ada komentar:

Posting Komentar

 

X-fouria

X-fouria
my favorite class

Apollo

Apollo
my rainbow class

for you all

First, I say thank you for come to my blog..
I want to tell you why I create my blog..
I write what I feel, I think, I want and I need to share you..
I want to write many inspiration for you so, I hope you can enjoy to come and read my blog :D :)
and for me, you are all my inspiration to create stories so, thank you very much :* :*

My sweet moment

My sweet moment
happy birthday for me